Quizoo くいずー

 一問一答クイズ [No.31260]
  電卓の数検定 より  電卓のデジタル数字にある縦横の棒の奴を検定します。
問題 「6」は?
  1. 3
  2. 6
  3. 2
  4. 5
   
制限時間 : 無制限
難易度 初級
出題数 134人中
正解数 111人
正解率 82.84%正解率
作成者 テミス (ID:17827)
最高連続正解数  0 問
現在の連続記録  0 問 ※ユーザーの方は記録が更新されます
一問一答クイズ一覧
このクイズ・検定に挑戦!
予習・復習
クイズ・検定一覧
○×マルバツクイズ一覧
トップページ
 予習・復習/一問一答クイズ
出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
こちらで学習をして、このクイズ・検定の合格を目指しましょう!
①2
②3
③7
④6
解答を表示する

正解:①

①4
②5
③4
④6
解答を表示する

正解:②

①6
②5
③9
④9
解答を表示する

正解:②

①2
②4
③3
④7
解答を表示する

正解:②

①6
②5
③7
④5
解答を表示する

正解:②

①2or5
②4or8
③3or4
④2
解答を表示する

正解:③

①4
②5
③2
④9or8
解答を表示する

正解:7

①7
②8
③9
④3
解答を表示する

正解:6

①9
②5
③6
④1
解答を表示する

正解:③

一問一答クイズ一覧
このクイズ・検定に挑戦!
 その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。

以下のクイズは、クイズ計算9_2桁数と1掛け算より、出題しております。
説明:2桁の数×1連続数の掛け算 簡単にやろう! 例.13×111111=
①13333
②12423
③14443
④6
解答を表示する

正解:③

解説:13×1111= ⇒1&(1+3)・・&3=14443 :《考え方》2桁の数×1連続は,2桁の左の数字「1」と右の数字「3」の間に,その和(1+3=4)を(1の個数-1)個,連続して書く

①13543
②467832
③466662
④422222
解答を表示する

正解:③

解説:42×11111= ⇒4&(4+2)・・&2=466662 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「2」の間に,その和(4+2=6)を(1の個数-1=4)個,連続して書く

①24643
②544442
③23433
④25653
解答を表示する

正解:25553

解説:23×1111= ⇒2&(2+3)・・&3=25553 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「3」の間に,その和(2+3=5)を(1の個数-1=3)個,連続して書く

①1222221
②25553
③1323231
④1123221
解答を表示する

正解:①

解説:11×111111= ⇒1&(1+1)・・・&1=1222221

①1232321
②6771
③7651
④6781
解答を表示する

正解:②

解説:61×111= ⇒6&(6+1)・・&1 ⇒6771

①6661
②2577555
③2777775
④2767675
解答を表示する

正解:③

解説:25×111111= ⇒25×111111= ⇒2&(2+5)・・&5=2777775 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「5」の間に,その和(2+5=7)を(1の個数-1=5)5個,連続して書く

①3936
②2567765
③3876
④3996
解答を表示する

正解:④

解説:36×111= ⇒3&(3+6)・・&6 ⇒ 3996

①467673
②478983
③475763
④3676
解答を表示する

正解:477773

解説:43×11111= ⇒4&(4+3)・・&3=477773 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「3」の間に,その和(4+3=7)を(1の個数-1)4個,連続して書く ⇒477773

①477773
②755558
③777778
④866658
解答を表示する

正解:④

解説:78×11111= ⇒桁上がりを考慮する。 ⇒7&(7+8)・・&8=866658 :《考え方》2桁の数×1連続は,2桁の左の数字「7」と右の数字「8」の間に,その和(7+8=15)を(1の個数-1=4)個,連続して書くが,桁上がりを考慮すると,左と間の数は75555が86665となるから ⇒866658 

①91222212
②878788
③10222212
④92222222
解答を表示する

正解:③

解説:92×111111= ⇒桁上がりを考慮する。 ⇒9&(9+2)・・&2=10222212 :《考え方》2桁の数×1連続は,2桁の左の数字「9」と右の数字「2」の間に,その和(9+2=11)を(1の個数-1=5)個,連続して書くが,桁上がりを考慮すると,左と間の数は911111が1022221となるから ⇒10222212 

①788881
②677661
③777771
④876661
解答を表示する

正解:①

解説:71×11111= ⇒7&(7+1)・・&1=788881

①101101
②90101
③100001
④911111
解答を表示する

正解:①

解説:91×1111= ⇒9(10)(10)(10)1⇒101101

①484848484
②12222222
③448888844
④488888884
解答を表示する

正解:④

解説:44×11111111= ⇒4&(4+4)・・&4=488888884

①500005
②499995
③444888444
④488885
解答を表示する

正解:②

解説:45×11111= ⇒4&(4+5)・・&5=499995

①797971
②888881
③899991
④878781
解答を表示する

正解:③

解説:81×11111= 8&(8+1)・・&1=899991 :《考え方》2桁の数×1連続は,2桁の左の数字「8」と右の数字「1」の間に,その和(8+1=9)を(1の個数-1=4)個,連続して書く ⇒899991

①5678987653
②5999999993
③5789878983
④5888888883
解答を表示する

正解:④

解説:53×111111111= ⇒5&(5+3)・・&3=5888888883 :《考え方》2桁の数×1連続は,2桁の左の数字「5」と右の数字「3」の間に,その和(5+3=8)を(1の個数-1=8)個,連続して書く ⇒5888888883