Quizoo くいずー

 一問一答クイズ [No.31279]
  文字式テスト より  中学一年生で習う基礎的な問題です。皆さんは解けますか?
問題 ある品物がa円で仕入れ、仕入れ値の2割の利益を見込んで定価をつけたが、売れないので定価から2割値引きしてい売った。この時の品物の売値はいくら?(考)
  1. 25a円
  2. a円
  3. 24/25a円
  4. 96/100a円
   
制限時間 : 無制限 a円ではありません。 よく考えてください。
難易度 初級
出題数 2193人中
正解数 2002人
正解率 91.29%正解率
作成者 新選組大好き (ID:17931)
最高連続正解数  0 問
現在の連続記録  0 問 ※ユーザーの方は記録が更新されます
一問一答クイズ一覧
このクイズ・検定に挑戦!
予習・復習
クイズ・検定一覧
○×マルバツクイズ一覧
トップページ
 予習・復習/一問一答クイズ
出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
こちらで学習をして、このクイズ・検定の合格を目指しましょう!
①144
②108
③72
④96/100a円
解答を表示する

正解:③

①36
②-2
③-4
④4
解答を表示する

正解:④

①-2
②-1
③1
④2
解答を表示する

正解:②

①-1
②1
③-2
④2
解答を表示する

正解:①

解説:-5X=5

①(2, 6)
②(6, 2)
③(3, 4)
④(4, 3)
解答を表示する

正解:②

一問一答クイズ一覧
このクイズ・検定に挑戦!
 その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。

以下のクイズは、クイズ計算9_2桁数と1掛け算より、出題しております。
説明:2桁の数×1連続数の掛け算 簡単にやろう! 例.13×111111=
①2
②13543
③14443
④12423
解答を表示する

正解:③

解説:13×1111= ⇒1&(1+3)・・&3=14443 :《考え方》2桁の数×1連続は,2桁の左の数字「1」と右の数字「3」の間に,その和(1+3=4)を(1の個数-1)個,連続して書く

①466662
②467832
③544442
④422222
解答を表示する

正解:①

解説:42×11111= ⇒4&(4+2)・・&2=466662 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「2」の間に,その和(4+2=6)を(1の個数-1=4)個,連続して書く

①24643
②23433
③25653
④13333
解答を表示する

正解:25553

解説:23×1111= ⇒2&(2+3)・・&3=25553 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「3」の間に,その和(2+3=5)を(1の個数-1=3)個,連続して書く

①1323231
②1123221
③1222221
④1232321
解答を表示する

正解:③

解説:11×111111= ⇒1&(1+1)・・・&1=1222221

①25553
②6781
③6661
④6771
解答を表示する

正解:④

解説:61×111= ⇒6&(6+1)・・&1 ⇒6771

①2567765
②2577555
③2767675
④2777775
解答を表示する

正解:④

解説:25×111111= ⇒25×111111= ⇒2&(2+5)・・&5=2777775 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「5」の間に,その和(2+5=7)を(1の個数-1=5)5個,連続して書く

①3936
②3876
③3996
④3676
解答を表示する

正解:③

解説:36×111= ⇒3&(3+6)・・&6 ⇒ 3996

①475763
②467673
③478983
④477773
解答を表示する

正解:④

解説:43×11111= ⇒4&(4+3)・・&3=477773 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「3」の間に,その和(4+3=7)を(1の個数-1)4個,連続して書く ⇒477773

①777778
②878788
③7651
④755558
解答を表示する

正解:866658

解説:78×11111= ⇒桁上がりを考慮する。 ⇒7&(7+8)・・&8=866658 :《考え方》2桁の数×1連続は,2桁の左の数字「7」と右の数字「8」の間に,その和(7+8=15)を(1の個数-1=4)個,連続して書くが,桁上がりを考慮すると,左と間の数は75555が86665となるから ⇒866658 

①91222212
②866658
③92222222
④12222222
解答を表示する

正解:10222212

解説:92×111111= ⇒桁上がりを考慮する。 ⇒9&(9+2)・・&2=10222212 :《考え方》2桁の数×1連続は,2桁の左の数字「9」と右の数字「2」の間に,その和(9+2=11)を(1の個数-1=5)個,連続して書くが,桁上がりを考慮すると,左と間の数は911111が1022221となるから ⇒10222212 

①677661
②876661
③777771
④10222212
解答を表示する

正解:788881

解説:71×11111= ⇒7&(7+1)・・&1=788881

①101101
②90101
③788881
④100001
解答を表示する

正解:①

解説:91×1111= ⇒9(10)(10)(10)1⇒101101

①911111
②484848484
③448888844
④444888444
解答を表示する

正解:488888884

解説:44×11111111= ⇒4&(4+4)・・&4=488888884

①499995
②488888884
③500005
④477775
解答を表示する

正解:①

解説:45×11111= ⇒4&(4+5)・・&5=499995

①878781
②488885
③899991
④797971
解答を表示する

正解:③

解説:81×11111= 8&(8+1)・・&1=899991 :《考え方》2桁の数×1連続は,2桁の左の数字「8」と右の数字「1」の間に,その和(8+1=9)を(1の個数-1=4)個,連続して書く ⇒899991

①5888888883
②5999999993
③888881
④5789878983
解答を表示する

正解:①

解説:53×111111111= ⇒5&(5+3)・・&3=5888888883 :《考え方》2桁の数×1連続は,2桁の左の数字「5」と右の数字「3」の間に,その和(5+3=8)を(1の個数-1=8)個,連続して書く ⇒5888888883