Quizoo くいずー

 一問一答クイズ [No.31279]
  文字式テスト より  中学一年生で習う基礎的な問題です。皆さんは解けますか?
問題 ある品物がa円で仕入れ、仕入れ値の2割の利益を見込んで定価をつけたが、売れないので定価から2割値引きしてい売った。この時の品物の売値はいくら?(考)
  1. 25a円
  2. a円
  3. 96/100a円
  4. 24/25a円
   
制限時間 : 無制限 a円ではありません。 よく考えてください。
難易度 初級
出題数 2193人中
正解数 2002人
正解率 91.29%正解率
作成者 新選組大好き (ID:17931)
最高連続正解数  0 問
現在の連続記録  0 問 ※ユーザーの方は記録が更新されます
一問一答クイズ一覧
このクイズ・検定に挑戦!
予習・復習
クイズ・検定一覧
○×マルバツクイズ一覧
トップページ
 予習・復習/一問一答クイズ
出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
こちらで学習をして、このクイズ・検定の合格を目指しましょう!
①96/100a円
②144
③108
④72
解答を表示する

正解:④

①36
②4
③2
④-4
解答を表示する

正解:②

①-1
②2
③-2
④-2
解答を表示する

正解:①

①-1
②1
③1
④2
解答を表示する

正解:①

解説:-5X=5

①(6, 2)
②(2, 6)
③(4, 3)
④-2
解答を表示する

正解:①

一問一答クイズ一覧
このクイズ・検定に挑戦!
 その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。

以下のクイズは、クイズ計算9_2桁数と1掛け算より、出題しております。
説明:2桁の数×1連続数の掛け算 簡単にやろう! 例.13×111111=
①12423
②13543
③13333
④14443
解答を表示する

正解:④

解説:13×1111= ⇒1&(1+3)・・&3=14443 :《考え方》2桁の数×1連続は,2桁の左の数字「1」と右の数字「3」の間に,その和(1+3=4)を(1の個数-1)個,連続して書く

①422222
②467832
③466662
④(3, 4)
解答を表示する

正解:③

解説:42×11111= ⇒4&(4+2)・・&2=466662 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「2」の間に,その和(4+2=6)を(1の個数-1=4)個,連続して書く

①24643
②544442
③23433
④25653
解答を表示する

正解:25553

解説:23×1111= ⇒2&(2+3)・・&3=25553 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「3」の間に,その和(2+3=5)を(1の個数-1=3)個,連続して書く

①1323231
②1222221
③25553
④1232321
解答を表示する

正解:②

解説:11×111111= ⇒1&(1+1)・・・&1=1222221

①6661
②1123221
③6781
④7651
解答を表示する

正解:6771

解説:61×111= ⇒6&(6+1)・・&1 ⇒6771

①2777775
②6771
③2767675
④2577555
解答を表示する

正解:①

解説:25×111111= ⇒25×111111= ⇒2&(2+5)・・&5=2777775 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「5」の間に,その和(2+5=7)を(1の個数-1=5)5個,連続して書く

①3676
②3996
③3936
④3876
解答を表示する

正解:②

解説:36×111= ⇒3&(3+6)・・&6 ⇒ 3996

①478983
②2567765
③475763
④467673
解答を表示する

正解:477773

解説:43×11111= ⇒4&(4+3)・・&3=477773 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「3」の間に,その和(4+3=7)を(1の個数-1)4個,連続して書く ⇒477773

①477773
②866658
③755558
④878788
解答を表示する

正解:②

解説:78×11111= ⇒桁上がりを考慮する。 ⇒7&(7+8)・・&8=866658 :《考え方》2桁の数×1連続は,2桁の左の数字「7」と右の数字「8」の間に,その和(7+8=15)を(1の個数-1=4)個,連続して書くが,桁上がりを考慮すると,左と間の数は75555が86665となるから ⇒866658 

①12222222
②92222222
③10222212
④777778
解答を表示する

正解:③

解説:92×111111= ⇒桁上がりを考慮する。 ⇒9&(9+2)・・&2=10222212 :《考え方》2桁の数×1連続は,2桁の左の数字「9」と右の数字「2」の間に,その和(9+2=11)を(1の個数-1=5)個,連続して書くが,桁上がりを考慮すると,左と間の数は911111が1022221となるから ⇒10222212 

①788881
②91222212
③876661
④677661
解答を表示する

正解:①

解説:71×11111= ⇒7&(7+1)・・&1=788881

①777771
②101101
③100001
④911111
解答を表示する

正解:②

解説:91×1111= ⇒9(10)(10)(10)1⇒101101

①484848484
②90101
③488888884
④448888844
解答を表示する

正解:③

解説:44×11111111= ⇒4&(4+4)・・&4=488888884

①488885
②477775
③500005
④444888444
解答を表示する

正解:499995

解説:45×11111= ⇒4&(4+5)・・&5=499995

①899991
②878781
③888881
④499995
解答を表示する

正解:①

解説:81×11111= 8&(8+1)・・&1=899991 :《考え方》2桁の数×1連続は,2桁の左の数字「8」と右の数字「1」の間に,その和(8+1=9)を(1の個数-1=4)個,連続して書く ⇒899991

①5999999993
②797971
③5789878983
④5888888883
解答を表示する

正解:④

解説:53×111111111= ⇒5&(5+3)・・&3=5888888883 :《考え方》2桁の数×1連続は,2桁の左の数字「5」と右の数字「3」の間に,その和(5+3=8)を(1の個数-1=8)個,連続して書く ⇒5888888883