Quizoo くいずー

 一問一答クイズ [No.31448]
  文字式テスト より  中学一年生で習う基礎的な問題です。皆さんは解けますか?
問題 2X-4X+6X-9X=5の時、Xはいくつ?
  1. 1
  2. 2
  3. -1
  4. -2
   
制限時間 : 無制限
難易度 初級
出題数 2245人中
正解数 2040人
正解率 90.87%正解率
作成者 Quizer (ID:18296)
最高連続正解数  0 問
現在の連続記録  0 問 ※ユーザーの方は記録が更新されます
一問一答クイズ一覧
このクイズ・検定に挑戦!
予習・復習
クイズ・検定一覧
○×マルバツクイズ一覧
トップページ
 予習・復習/一問一答クイズ
出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
こちらで学習をして、このクイズ・検定の合格を目指しましょう!
①-2
②a円
③96/100a円
④25a円
解答を表示する

正解:24/25a円

解説:定価は a+a×2/10=12/10a 定価の2割引きなので 定価の8割で売ったから 12/10a×8/10 =12×8/10×10a 約分して 24/25a円になります。

①24/25a円
②36
③108
④72
解答を表示する

正解:④

①-4
②4
③2
④-2
解答を表示する

正解:②

①-2
②-1
③144
④2
解答を表示する

正解:②

①1
②(6, 2)
③(4, 3)
④(2, 6)
解答を表示する

正解:②

一問一答クイズ一覧
このクイズ・検定に挑戦!
 その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。

以下のクイズは、クイズ計算9_2桁数と1掛け算より、出題しております。
説明:2桁の数×1連続数の掛け算 簡単にやろう! 例.13×111111=
①14443
②12423
③13543
④13333
解答を表示する

正解:①

解説:13×1111= ⇒1&(1+3)・・&3=14443 :《考え方》2桁の数×1連続は,2桁の左の数字「1」と右の数字「3」の間に,その和(1+3=4)を(1の個数-1)個,連続して書く

①466662
②544442
③(3, 4)
④422222
解答を表示する

正解:①

解説:42×11111= ⇒4&(4+2)・・&2=466662 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「2」の間に,その和(4+2=6)を(1の個数-1=4)個,連続して書く

①467832
②23433
③25553
④24643
解答を表示する

正解:③

解説:23×1111= ⇒2&(2+3)・・&3=25553 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「3」の間に,その和(2+3=5)を(1の個数-1=3)個,連続して書く

①25653
②1232321
③1123221
④1222221
解答を表示する

正解:④

解説:11×111111= ⇒1&(1+1)・・・&1=1222221

①7651
②6781
③6661
④1323231
解答を表示する

正解:6771

解説:61×111= ⇒6&(6+1)・・&1 ⇒6771

①6771
②2577555
③2767675
④2777775
解答を表示する

正解:④

解説:25×111111= ⇒25×111111= ⇒2&(2+5)・・&5=2777775 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「5」の間に,その和(2+5=7)を(1の個数-1=5)5個,連続して書く

①3936
②2567765
③3876
④3996
解答を表示する

正解:④

解説:36×111= ⇒3&(3+6)・・&6 ⇒ 3996

①478983
②3676
③477773
④467673
解答を表示する

正解:③

解説:43×11111= ⇒4&(4+3)・・&3=477773 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「3」の間に,その和(4+3=7)を(1の個数-1)4個,連続して書く ⇒477773

①878788
②755558
③866658
④777778
解答を表示する

正解:③

解説:78×11111= ⇒桁上がりを考慮する。 ⇒7&(7+8)・・&8=866658 :《考え方》2桁の数×1連続は,2桁の左の数字「7」と右の数字「8」の間に,その和(7+8=15)を(1の個数-1=4)個,連続して書くが,桁上がりを考慮すると,左と間の数は75555が86665となるから ⇒866658 

①10222212
②91222212
③92222222
④475763
解答を表示する

正解:①

解説:92×111111= ⇒桁上がりを考慮する。 ⇒9&(9+2)・・&2=10222212 :《考え方》2桁の数×1連続は,2桁の左の数字「9」と右の数字「2」の間に,その和(9+2=11)を(1の個数-1=5)個,連続して書くが,桁上がりを考慮すると,左と間の数は911111が1022221となるから ⇒10222212 

①12222222
②788881
③876661
④777771
解答を表示する

正解:②

解説:71×11111= ⇒7&(7+1)・・&1=788881

①100001
②90101
③677661
④101101
解答を表示する

正解:④

解説:91×1111= ⇒9(10)(10)(10)1⇒101101

①484848484
②488888884
③444888444
④448888844
解答を表示する

正解:②

解説:44×11111111= ⇒4&(4+4)・・&4=488888884

①488885
②477775
③499995
④911111
解答を表示する

正解:③

解説:45×11111= ⇒4&(4+5)・・&5=499995

①878781
②899991
③797971
④888881
解答を表示する

正解:②

解説:81×11111= 8&(8+1)・・&1=899991 :《考え方》2桁の数×1連続は,2桁の左の数字「8」と右の数字「1」の間に,その和(8+1=9)を(1の個数-1=4)個,連続して書く ⇒899991

①5789878983
②5678987653
③5888888883
④500005
解答を表示する

正解:③

解説:53×111111111= ⇒5&(5+3)・・&3=5888888883 :《考え方》2桁の数×1連続は,2桁の左の数字「5」と右の数字「3」の間に,その和(5+3=8)を(1の個数-1=8)個,連続して書く ⇒5888888883