Quizoo くいずー

 一問一答クイズ [No.31380]
  組み合わせ問題 より  数学の組み合わせ問題です。たとえば、サイコロ三個の出目の組み合わせは何通り? というような問題です(ちなみに、この答は216通り)。
問題 日本の貨幣をつかって80円をちょうど支払う方法は何通りある?(ギザ10など、同じ金額の貨幣の区別はつけないものとする)
  1. 81通り
  2. 98通り
  3. 52通り
  4. 36通り
   
制限時間 : 無制限
難易度 初級
出題数 592人中
正解数 538人
正解率 90.88%正解率
作成者 トキノ (ID:18557)
最高連続正解数  0 問
現在の連続記録  0 問 ※ユーザーの方は記録が更新されます
一問一答クイズ一覧
このクイズ・検定に挑戦!
予習・復習
クイズ・検定一覧
○×マルバツクイズ一覧
トップページ
 予習・復習/一問一答クイズ
出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
こちらで学習をして、このクイズ・検定の合格を目指しましょう!
①33通り
②10通り
③66通り
④132通り
解答を表示する

正解:③

解説:これはよくある問題です。 【〇〇〇〇〇〇〇〇〇〇||】 と10個の玉と二本の縦棒と置き、それの組み合わせを考える。 一本目の棒より左側をA、一本目の棒と二本目の棒の間をB、二本目の棒より右をCとするわけです。(この場合、Aの玉の数は10個、B、Cは0個となる) なので、12C2=66通りとなる。

①64試合
②81通り
③32試合
④48試合
解答を表示する

正解:34試合

解説:トーナメント戦の場合、1試合でかならず1チームが負け、優勝のチームを決める。つまり、1チームを除いて全員負けるわけだから、34チーム負けることになる。34チーム負けさせるには34試合行う必要がある。

①34試合
②45通り
③36通り
④63通り
解答を表示する

正解:③

解説:【〇・〇・〇・〇・〇・〇・〇・〇・〇・〇】 この黒い点のどこかに、柵を設けて計算する。 9C2=36

①120通り
②24通り
③5通り
④16通り
解答を表示する

正解:②

解説:通常のテーブルなら、5!の120通りだが、円形の場合は、ひとりをまず座らせてから計算するので4!=24通りとなる。

①18通り
②36通り
③21通り
④30通り
解答を表示する

正解:③

解説:区別のつくサイコロなら36通りあるが、区別のつかないサイコロの場合、 (2・4)と(4・2)などは同じものと扱わなければいけない。 そのため、まずは(1・1)(2・2)など同じ出目を除き、 36-6=30 をふたつにわけたのち、同じ出目を足すことで答えが導かれる。 15+6=21通り

①720通り
②55通り
③14400通り
④36000通り
解答を表示する

正解:③

解説:男性五人の並び方は120通り。 女性三人の並び方は6通り。 【・〇・〇・〇・〇・〇・】 〇を男性とした場合、女性が入れる場所は・となり、その組み合わせは6C3=20通り 120×6×20=14400通り

①12通り
②6通り
③4通り
④2通り
解答を表示する

正解:②

①360通り
②36通り
③30通り
④15通り
解答を表示する

正解:②

解説:区別がつくので、6×6の36通りでいいです。

①21通り
②2869685通り
③2858685通り
④2859685通り
解答を表示する

正解:②

解説:トランプの枚数は13×4+1=53枚。 そこから5枚なので53C5=2869685通り。 凄いですね。

①2868685通り
②84通り
③24通り
④72通り
解答を表示する

正解:②

解説:四種類がバラバラとすると、その色の組み合わせは4!=24通り 三種類の色が使われるとする。右上と左下の色が同じ場合、同じところの色は4種類、さらに残りニマスを考え、 4×3×2=24通り、右下と左上が同じ場合も等しく24通り。 二種類の色が使われているとすると、 4×3=12通り。 よって、24×3+12=84通り

一問一答クイズ一覧
このクイズ・検定に挑戦!
 その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。

以下のクイズは、数学3級検定より、出題しております。
説明:数学の検定です。3級程度です。受験生はやってみてください。わかるかな?
①48通り
②34
③32
④30
解答を表示する

正解:③

解説:2x−3xyに「x=4,y=−2」を代入する⇒(2×4)−3×4×(−2)→8−{12×(−2)}→8+24=32

①x=3,4
②x=7,8
③x=5,6
④x=4,5
解答を表示する

正解:④

①y=−4x+18
②36
③y=−3x+14
④y=−6x+12
解答を表示する

正解:①

解説:公式「y=m(x−a)+b」を使う。 y=−4(x−3)+6→y=−4x+12+6→「y=−4x+18」

①(−6,5)
②(6,5)
③y=−7x+13
④(−6,−5)
解答を表示する

正解:④

解説:(6,5)の原点対称→(−6,−5)。なおx軸対称→(6,−5)、y軸対称→(−6,5)となる。

①a=4
②(6,−5)
③a=6
④a=10
解答を表示する

正解:a=8

解説:y=x+aに(−2,6)を代入→6=−2+a→「a=8」

①b=c/5a
②a=8
③b=a/5c
④b=5c/a
解答を表示する

正解:④

解説:c=1/5ab→5c/a=b→「b=5c/a」

①105m
②b=5a/c
③100m
④110m
解答を表示する

正解:①

解説:1秒後なので「x=1」を式に代入する→y=120−(5×1+10×1)→120−15→「105m」

①7
②5
③9
④11
解答を表示する

正解:①

解説:3で割り1余る整数→「4,7,10,13,16・・・」、5で割り2余る整数→「7,12,17,22,27・・・」なので、最小の数は「7」

①115m
②4通り
③5通り
④3通り
解答を表示する

正解:②

解説:1通り→100円表 10円表、2通り→100円表 10円裏、3通り→100円裏 10円表、4通り→100円裏 10円裏、なので全部で「4通り」。

①10/49
②11/49
③7/49
④6通り
解答を表示する

正解:9/49

解説:1回の試行で赤か白を取るパターン→全部で「7通り」、白球は「3通り」なので、1回目は「3/7」、2回目も「3/7」となるので→3/7×3/7=「9/49」