Quizoo くいずー

 一問一答クイズ [No.12605]
  宇宙 より  宇宙の問題を並べています。他にもビッグバン
問題 土星の衛星の数はいくつ?
  1. 49個
  2. 63個
  3. 54個
  4. 70個
   
制限時間 : 無制限
難易度 中級
出題数 538人中
正解数 346人
正解率 64.31%正解率
作成者 Koma7 (ID:11480)
最高連続正解数  0 問
現在の連続記録  0 問 ※ユーザーの方は記録が更新されます
一問一答クイズ一覧
このクイズ・検定に挑戦!
予習・復習
登録タグ登録タグ
関連するクイズ・検定関連するクイズ・検定
その他のクイズ・検定その他のクイズ・検定
クイズ・検定一覧
○×マルバツクイズ一覧
トップページ
 予習・復習/一問一答クイズ
出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
こちらで学習をして、このクイズ・検定の合格を目指しましょう!
①460億光年
②41400000000000000km
③46000000000000000km
④49個
解答を表示する

正解:②

①デネボラ
②ベラトリックス
③レグルス
④アルギエバ
解答を表示する

正解:②

①414億光年
②1889年
③1887年
④1888年
解答を表示する

正解:④

①−297度
②297度
③ー60度
④1890年
解答を表示する

正解:①

①0.6%
②60度
③12%
④0.3%
解答を表示する

正解:①

①2017年12月11日
②2015年10月21日
③2036年5月8日
④2023年7月19日
解答を表示する

正解:①

①27
②57.78%
③17
④197
解答を表示する

正解:①

①31
②157日
③89日
④0・3日
解答を表示する

正解:117日

①42年
②100万年
③96年
④117日
解答を表示する

正解:①

一問一答クイズ一覧
このクイズ・検定に挑戦!
 その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。

以下のクイズは、クイズ計算9_2桁数と1掛け算より、出題しております。
説明:2桁の数×1連続数の掛け算 簡単にやろう! 例.13×111111=
①13333
②13543
③53年
④14443
解答を表示する

正解:④

解説:13×1111= ⇒1&(1+3)・・&3=14443 :《考え方》2桁の数×1連続は,2桁の左の数字「1」と右の数字「3」の間に,その和(1+3=4)を(1の個数-1)個,連続して書く

①467832
②544442
③12423
④422222
解答を表示する

正解:466662

解説:42×11111= ⇒4&(4+2)・・&2=466662 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「2」の間に,その和(4+2=6)を(1の個数-1=4)個,連続して書く

①25653
②23433
③466662
④24643
解答を表示する

正解:25553

解説:23×1111= ⇒2&(2+3)・・&3=25553 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「3」の間に,その和(2+3=5)を(1の個数-1=3)個,連続して書く

①25553
②1123221
③1323231
④1222221
解答を表示する

正解:④

解説:11×111111= ⇒1&(1+1)・・・&1=1222221

①1232321
②7651
③6661
④6771
解答を表示する

正解:④

解説:61×111= ⇒6&(6+1)・・&1 ⇒6771

①2777775
②2767675
③2567765
④2577555
解答を表示する

正解:①

解説:25×111111= ⇒25×111111= ⇒2&(2+5)・・&5=2777775 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「5」の間に,その和(2+5=7)を(1の個数-1=5)5個,連続して書く

①3936
②6781
③3676
④3996
解答を表示する

正解:④

解説:36×111= ⇒3&(3+6)・・&6 ⇒ 3996

①467673
②477773
③478983
④3876
解答を表示する

正解:②

解説:43×11111= ⇒4&(4+3)・・&3=477773 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「3」の間に,その和(4+3=7)を(1の個数-1)4個,連続して書く ⇒477773

①878788
②866658
③777778
④755558
解答を表示する

正解:②

解説:78×11111= ⇒桁上がりを考慮する。 ⇒7&(7+8)・・&8=866658 :《考え方》2桁の数×1連続は,2桁の左の数字「7」と右の数字「8」の間に,その和(7+8=15)を(1の個数-1=4)個,連続して書くが,桁上がりを考慮すると,左と間の数は75555が86665となるから ⇒866658 

①10222212
②12222222
③92222222
④475763
解答を表示する

正解:①

解説:92×111111= ⇒桁上がりを考慮する。 ⇒9&(9+2)・・&2=10222212 :《考え方》2桁の数×1連続は,2桁の左の数字「9」と右の数字「2」の間に,その和(9+2=11)を(1の個数-1=5)個,連続して書くが,桁上がりを考慮すると,左と間の数は911111が1022221となるから ⇒10222212 

①777771
②677661
③876661
④91222212
解答を表示する

正解:788881

解説:71×11111= ⇒7&(7+1)・・&1=788881

①101101
②911111
③788881
④90101
解答を表示する

正解:①

解説:91×1111= ⇒9(10)(10)(10)1⇒101101

①100001
②488888884
③444888444
④484848484
解答を表示する

正解:②

解説:44×11111111= ⇒4&(4+4)・・&4=488888884

①448888844
②477775
③499995
④488885
解答を表示する

正解:③

解説:45×11111= ⇒4&(4+5)・・&5=499995

①500005
②878781
③888881
④797971
解答を表示する

正解:899991

解説:81×11111= 8&(8+1)・・&1=899991 :《考え方》2桁の数×1連続は,2桁の左の数字「8」と右の数字「1」の間に,その和(8+1=9)を(1の個数-1=4)個,連続して書く ⇒899991

①5888888883
②5678987653
③5789878983
④5999999993
解答を表示する

正解:①

解説:53×111111111= ⇒5&(5+3)・・&3=5888888883 :《考え方》2桁の数×1連続は,2桁の左の数字「5」と右の数字「3」の間に,その和(5+3=8)を(1の個数-1=8)個,連続して書く ⇒5888888883